Impaired Mitochondrial Biogenesis Precedes Heart Failure in Right Ventricular Hypertrophy in Congenital Heart Disease Karamanlidis et al: mtDNA Depletion in Human RV Hypertrophy

نویسندگان

  • Georgios Karamanlidis
  • Victor Bautista-Hernandez
  • Francis Fynn-Thompson
  • Pedro del Nido
  • Rong Tian
چکیده

Background—The outcome of the surgical repair in congenital heart disease (CHD) correlates with the degree of myocardial damage. In this study we determined whether mitochondrial DNA depletion is a sensitive marker of right ventricular (RV) damage and whether impaired mitochondrial DNA (mtDNA) replication contributes to the transition from compensated hypertrophy to failure. Methods and Results—RV samples obtained from 31 patients undergoing cardiac surgery were compared to 5 RV samples from non-failing hearts (control). Patients were divided into compensated hypertrophy and failure groups based on preoperative echocardiography, catheterization and/or MRI data. Mitochondrial enzyme activities (citrate synthase and succinate dehydrogenase) were maintained during hypertrophy and decreased by ~40% (p<0.05 vs. control) at the stage of failure. In contrast, mtDNA content was progressively decreased in the hypertrophied RV through failure (by 28±8% and 67±11% respectively, p<0.05 for both), whereas mtDNA encoded gene expression was sustained by increased transcriptional activity during compensated hypertrophy but not in failure. MtDNA depletion was attributed to reduced mtDNA replication in both hypertrophied and failing RV and it was independent of PGC-1 down-regulation but was accompanied by reduced expression of proteins constituting the mtDNA replication fork. Decreased mtDNA content in compensated hypertrophy was also associated with pathological changes of mitochondria ultrastructure. Conclusions— Impaired mtDNA replication causes early and progressive depletion of mtDNA in the RV of the CHD patients during the transition from hypertrophy to failure. Decreased mtDNA content is likely a sensitive marker of mitochondrial injury in this patient population.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease.

BACKGROUND The outcome of the surgical repair in congenital heart disease correlates with the degree of myocardial damage. In this study, we determined whether mitochondrial DNA depletion is a sensitive marker of right ventricular (RV) damage and whether impaired mitochondrial DNA (mtDNA) replication contributes to the transition from compensated hypertrophy to failure. METHODS AND RESULTS RV...

متن کامل

Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension.

BACKGROUND Right ventricular (RV) dysfunction (RVD) is the most frequent cause of death in patients with pulmonary arterial hypertension. Although abnormal energy substrate use has been implicated in the development of chronic left heart failure, data describing such metabolic remodeling in RVD remain incomplete. Thus, we sought to characterize metabolic gene expression changes and mitochondria...

متن کامل

Clinical/Translational Research Defective DNA Replication Impairs Mitochondrial Biogenesis In Human Failing Hearts

Rationale: Mitochondrial dysfunction plays a pivotal role in the development of heart failure. Animal studies suggest that impaired mitochondrial biogenesis attributable to downregulation of the peroxisome proliferator-activated receptor coactivator (PGC)-1 transcriptional pathway is integral of mitochondrial dysfunction in heart failure. Objective: The study sought to define mechanisms underly...

متن کامل

Persistent pulmonary hypertension results in reduced tetralinoleoyl-cardiolipin and mitochondrial complex II + III during the development of right ventricular hypertrophy in the neonatal pig heart.

Persistent pulmonary hypertension of the newborn (PPHN) results in right ventricular (RV) hypertrophy followed by right heart failure and an associated mitochondrial dysfunction. The phospholipid cardiolipin plays a key role in maintaining mitochondrial respiratory and cardiac function via modulation of the activities of enzymes involved in oxidative phosphorylation. In this study, changes in c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011